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ABSTRACT

Consider the standard linear program:

Minimize ¢ x - -

subject to: A x =)
0

X >

where A 1s an m x n matrix. The simplex algorithm solves this linear
program by moving from extreme point of the feasibility region to a better
(in terms of the objective function c X) extreme point (via the pivot
operation) until the optimal is reached. In order to obtain a feel for
the number of necessary iterations, we consider a simple probabilistic
(Markov chain) model as to how the algorithm moves along the extreme points.
At first we suppose that if at any time the algorithm is at the jth best
extreme point then after the next pivot the resulting extreme point is
equally likely to be any of the j ~ 1 best. Under this assumption, we
show that the time to get from the Nth best to the best extreme point has
approximately, for large N , a Poisson distribution with mean equal to
the logarithm (base e) of N . We also consider a more general probabi-
listic model in which we drop the uniformity assumption and suppose that
when at the jth best the next one is chosen probabilistically according to
weights Wy i=1, ..., 3~-1.

)
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A SIMPLE HEURISTIC APPROACH TO SIMPLEX EFFICIENCY

by

Sheldon M. Ross

1. INTRODUCTION

Consider the standard linear program:

Minimize ¢ x
subject to: A x=bH

>0

where A is an m x n matrix. The simplex algorithm solves this
linear program by moving from extreme point of the feasibility region
to a better (in terms of the objective function ¢ x) extreme point
(via the pivot operation) until the optimal is reached. As there are
roughly N = (2) such extreme points it would seem that this method
might take many iterations but, surprisingly to some, this does not
appear to be the case in practice,

In order to obtain a feel for whether or not the above is sur-
prising, we consider a simple probabilistic (Markov chain) model as to
how the algorithm moves along the extreme points. At first we suppose
that if at any time the algorithm is at the jth best extreme point
then after the next pivot the resulting extreme point is equally likely
to be any of the j - 1 best. Under this assumption, we show that the
time to get from the Nth best to the best extreme point has approximately,
for large N , a Poisson distribution with mean equal to the logarithm

(base e) of N . We also consider a more general probabilistic model




in which we drop the uniformity assumption and suppose that when at

the jth best the next one is chosen probabilistically according to

weights w i=1, ...,3-1.

i *




2. THE UNIFORM MARKOV CHAIN

Consider a Markov chain for which Pll = 1 and

1
Pij =T -71° j=1, ..., 1-1,1i>1
and let '1‘N denote the number of transitions to get from state N

to state 1 . Then TN can be expressed as

b
P& d-1
. e LY
where
‘l if the process ever enters j

|‘ =
. 3 20 otherwise .

Proposition 1:

Il, ceey IN-l are independent and

P{Ij =1} =1/j , 1 <j<N-1.

3
Proof:

é Given Ij+1’ ooy IN let n=min {1 : 1 > 3§ , Ii = 1} . Then
]

- - Hm=~1) "

P{Ij 1lxj+l, S VOS] 1/3 .
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Corollary 2:
N-1

(1) E[myl = Zl 1/3
js

N-l ) L
(11) var () = ] = ( -—)
i U

(iii) For N large, TN has approximately a Poisson distribution

with mean log N .

Proof:

Parts (i) and (ii) follow from Proposition 1 and the representation

Z I . Part (iii) follows from the Poisson limit theorem since

i=1
N N-1
X dx
Jx Zl/j<1+J’x
1 1
or
N-1
log N< } 1/§ <1+ log (N -1)
1
and so

N-1
logN=z ) 1/3 .8
=1

FEE RPN - e - ——
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3. APPLICATION TO SIMPLEX

Assuming that n , m and n - m are all large, we have by

Stirling's approximation that

nn+ 1/2
n-m+ l/2mm+ 1/2/2}-

(n ~m)

and so letting c¢ = n/m

log N ~ (mc + 1/2) log (mc) - (m(c - 1) + 1/2) log (m(c - 1))

- (m+ 1/2) log m ~ 1/2 log (2m)

or

log N ~ mjc log + log (¢ - 1)

c
-1

Now, as lim x log (x/x - 1) = 1 , it follows that when c is large
p. g o]

log N ~m[l + log (¢ - 1)] .

Thus for instance if n = 8000 , m = 1000 , then the number of necessary
transitions 1is approximately Poisson distributed with mean

1000(1 + log 7) =~ 3000 . As the variance is equal to the mean, we see
by the normal approximation to the Poisson that the number of necessary

transitions would be roughly between
3000 + 2v3000 or , roughly, 3000 + 110

95 percent of the time.




4. A WEIGHTED MARKOV CHAIN MODEL

Suppose now that Pll =1 and

With this model we are thus able to give more weight to those states
closest to the one presently at by letting wj increase in j

Analogously with Proposition 1, we have

; Proposition 2:

If
‘1 if j 1s ever visited
Ij =
(0 otherwise .
Then Il’ ceny IN_l are independent and
W

P{I, =1} = —d4— , 1<y <N-1.

N-1
In addition, if Ty = 321 Ij . Then

N-1 J
E[Ty) = [ wj/z W,

3=1 1
N-1 w w
Var (TN) = j{l g—l— 1 - E_l_
W, w
14 1t




i=1 i=]
k|
zIxadx
1
]a+1 -1
a+ 1
and so
i ale+ D% o+l
% ja+l -1 3
Yy
1
Hence
N-1
E(T,] = f -o%-l—dx= (a + 1) log (N - 1)
1

and thus in this case TN has, for large N , approximately a Poisson
distribution with mean (a + 1) log N . Thus when N = (:) , the number of
transitions (i.e., simplex pivot iterations) is approximately Poisson with
mean

c
c -1

(a + l)m[c log ( ) + log (c - l)} ,» ¢ =n/m

which when ¢ 1is large is approximately

(a + 1)m[l + log (c -~ 1)] .
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